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LETTER TO THE EDITOR 

Phase separation in the presence of a surface 
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5 Department of Physics, North Carolina State University, Raleigh, NC 276954202, USA 

Received 16 September 1993 

Abstract. We have studied the phase separation of a system with a conserved order param- 
eter in the presence of a flat surface via Monte Carlo simulations. For various quench 
parameters, we observed the domain growth in a surface layer. The kinetics ofthis ordering 
was studied, both in the presence and absence of bulk phase separation. In the absence of 
bulk phase separation, the surface domains were found to follow model A growth kinetics. 
In the presence of bulk phase separation. a crossover in the surface kinetics between model 
A and model B dynamics was observed. 

When a bnary fluid mixture is rapidly quenched from the disordered, single-phase 
mgion of the phase diagram to apoint inside of its coexistence curve, it orders kinetically 
[l]. A long-wavelength instability creates a morphology of interpenetrating domains of 
ordered phases, which grow to macroscopic size as time goes on. Experiments and 
computer simulations show that this growth of order often involves a single time- 
dependent length, the average domain sue R(t), with which all spatial dependencies 
scale. For example, the time-dependent strncture factor S(k, t). with wavenumber k, 
displays the scaling behaviour S(k, z ) = R ( ~ ) ~ F ( x ) ,  where x=kR(t), dis the dimensional- 
ity of the system and F(x) is a shape function. Furthermore, the averake domain size 
often satisfies a power law, R(t)-t", with growth exponent n. This exponent n is typ- 
ically independent of the dimensionality of the system, and reflects the thermodynamic 
forces driving the phase separation. It does, however, depend crucially upon whether 
or not the order parameter is conserved, or coupled to other fields. If the system is 
characterized by a non-conserved order parameter, as is the case of an order-disorder 
transition (model A), phase separation takes place via domain growth. This growth is 
curvature driven and has n= 2 .  In the case of a system involving a conserved order 
parameter (model B), ordering takes place via the diffusive transport of material through 
the bulk. Growth takes place via the Lifshitz-Slyozov mechanism which is characterized 
by a groyth exponent n =f 121. Fluid systems follow this growth mechanism at interme- 
diate times [3], while at late times hydrodynamic effects become important [4]. 

While there has heen considerable progress in understanding the phase separation 
of bulk fluid systems, a number of recent experiments have pointed to important effects 
which result from the presence of surfaces: Studies of fluid systems show the formation' 
of surface layers, whose growth dynamics differ5 from that of the bulk [5,6]. Recently, 
Wiltzius and co-workers [7,8] have also observed a 'fast growth'mode in phase separat- 
ing fluid systems which is characterized by an exponent n=g. While there is no funda- 
mental understanding of this growth mode at present, it is believed to involve surface 
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phenomena. In porous media, the complicated structure of the surface leads to the 
formation of long-lived metastable structures which limit the phase separation and slow 
down the growth kinetics considerably [9-111. 

As a first step towards studying these situations, we have carried out extensive 
Monte Carlo simulations of phase separation in the presence of a surface. In particular, 
we focused on the dynamics of surface layers. On the whole, the surface domains are 
observed to grow much more rapidly than the corresponding bulk domains. 

The Hamiltonian? of our model is 

H=-J C aio;-J, E a,aJ-HsZaj. 
<ii) <it,> 

Here, J is the interaction between bulk spins, J, the interaction between spins at the 
surface and H, the field at the surface. The first sum runs over all distinct nearest 
neighbour spins in the bulk, while the primed sums runs over all pairs of spins at the 
surface. The spins take on values oj=+l.  Details of our simulations are as follows. 
After a quench from an infinite temperature. the system was evolved using standard 
Kawasaki spin-exchange dynamics, so that the bulk system corresponds to model B. 
The simulations were performed using a multispin coding algorithm. Systems of size 
L x L x D with D = 20, L = 64 and 128 were studied. The distance (D) between the 
surfaces (z-direction) was large enough to avoid finite-size effects over the time regime 
studied. Periodic boundary conditions were used in the horizontal (xy)  directions. Sev- 
eral measures of length were used to study the average domain size per layer, chiefly 
the inverse perimeter density per layer Q(t)= 1/(2-Z0,, apj/L2), where the sum runs 
over all distinct neighbour pairs in a given layer. The circularly-averaged dynamic 
structure factor per layer . .  

was also monitored. At least 20 independent runs were carried out per quench, with 
80 runs being carried out for selective quenches. 

The growth dynamics of the surface layer was found td depend upon the quench 
parameters. First. consider the caseof a system withno surface field, i.e. H,=O$. If J,/ 
J>2T,  where T is the temperature in units of the critical temperature of the three- 
dimensional Ising model, then surface phase separation is favoured [ 121. Two situations 
then arise: (i) the temperature is such that there is little or no bulk phase separation; 
(ii) there is phase separation in the bulk. Domain structures for both of these cases are 
shown in figure 1. 

To study the former, we carried out critical quenches with parameters J,/J= 10 and 
T= 1.55. The growth of the surface domains was found to obey a power-law scaling 
with growth exponent n=0.48+0.03, consistent with the curvature driven growth of 
model A. Similar results were obtained for other values of JS/J>2Tand smaller system 
sues. For these quenches, there was little or no growth of bulk domains. 

i We emphasize here that in this study we have examined the simplest model for phase separation in the 
presence of a surface, and are not at present considering hydrodynamics effects, even though these may be 
important. This model has been used in other studies of phase separating tiuid systems: e.g. [IO, 111. 
$ in  general one expects H. to be non-zero for Buid systems. We study the H,=O case separately in order to 
better understand the physics of surface ordering. 
5 We studied the surface ordering in the presence of a strong enhancement for numerical convenience ody- 
runs with weaker couplings gave similar results. but can take much longcr to simulate, 
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Figure 1. Sample domain configurations of the surface layer (left) and in the bulk (right): 
(U) T=1.5at timer=520MCS; ( 6 )  T=O,8 attime 1=1200MCS. 

Similarly, we studied the growth of surface layers for T< T,, when phase separation 
in the bulk does take place. Again, a relatively fast bowing layer is formed at the 
surface, which was, however, connected to the bulk domain structure. For T>O.3, at 
any time, the sue of the bulk domains was less than the sue of the surface domains; 
while for TG0.3, the size of the bulk and surface domains were approximately equal. 
The exponents were measured taking the fist-order finite-size corrections of the domains 
into account: the effective exponents n(R) =d[ln(R(t))]/d[ln(t)] were measured. The 
asymptotic exponents were then obtained through a fit to the Gibbs-Thomson form 
n(R) =n(R-+co) + C’/R [ 131. The exponents as a function of temperature are summar- 
ized in figure 2. The estimated error is about 5%?. 

These results may be understood as follows. Consider the case where there is no 
phase separation in the bulk. As the domains form in the surface layer, they grow in 
such a way as to reduce the curvature within the layer. Because spin exchange can 
occur between different layers, the bulk acts as a reservoir of spins for the surface layer. 
Thus, as far as the surface layer is concerned, the system acts as if the order parameter 
is non-conserved (model A), despite the global conservation law$. To further test this, 
we have fitted the circularly averaged structure factor of the first layer to the scaling 
form predicted by Ohta, Jasnow and Kawasaki (OJK) [15]. Figure 2 shows that the 
numerical data and the theoretical form are in good agreement. 

If there is phase separation in the bulk, the flux to the surface layer is reduced, not 
only because the rate of exchange between layers is lowered, but also because the 
increased correlation between bulk spins decreases the number of possible exchanges 
that help the surface layer to grow. However, for the most part the bulk and surface 
domains are connected, with the bulk domains being the smaller in size. Because inter- 
layer spin exchange can still occur, presumably via diffusion along domain surfaces, 
the scaled structure factor is still expected to look like that of a model A system. 

1 We emphasize that these results are not valid for very late times when finiteaize effects in the bulk become 
important. 
1 In some ways this resembles a model B system with long-range exchanges, which also follows model A 
dynamics [141. 
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Figure 2. Scaled structure factor F(x)=S(k ,  ~ ) / R d ( t )  Venus x = k R ( t ) ,  for temperatures 
both above and below T, The solid line marks the Et to the OIK form. Details of data: 
0, T=O.S; 0 T=0.7; 'x". T=0.8; *, T=I.O; *, T=1.2: A, T=1.5. The inset shows 
the asymptotic growth exponents n as a function of temperature T, with dotted lines rep- 
resentingn=i andn=$, respectively. 

Figure 2 shows that this is indeed the case. However, as the temperature is lowered 
from T= 1.0 to T= 0.3, the value of the growth exponent of the surface domains crosses 
over from n= 4 to the classical Lifshitz-Slyozov value of R = $ ,  reflecting the decreasing 
flux to the surface layer. 

Now consider the growth of the surface domains in the presence of a surface field, 
i.e. H,#O. In this case, a careful analysis of crossover effects is necessary. In the absence 
of a surface field, and bulk phase separation, we have seen that the surface film obeys 
the domain growth kinetics of model A. In the presence of a field, it is easily shown 
that the interface velocity for a model A system follows v=C/R+H,  where C and H 
are constants [16]. With these constants, two length scales l , - (Ct ) ' /2  and 12-Ht may 
be formed, which are readily combined in the crossover form R(t, H,)-llg(y= 
[ 1 2 / l , ] 2 ) - f  g(y=tH:) ,  where g(y) is a crossover function of the reduced variable y 
(we set C= 1, for convenience). Assuming that the limits are non-singular, one can 
expect g(y)+constant fory-0 andg(y)+y'" for y+m?. The latter limit implies that 
for a system consisting of 'gently curved' interfaces, R-t, subject to early time trans- 
ients, when the initial curvature of the domains is large. 

We have carried out critical quenches with H, varying from 0.1 to 1.0 (other param- 
eters are Js /J=  10 and T=1.5). Numerically, a substantial time regime where R(t)-t 
was difficult to discem, both because of the early-time transients and because of strong 
finite-size effectst. To test the crossover form, we plotted g ( y ) = [ R ( t ,  HJ-R(t ,  H,= 
O)J/R(t, H,=O) versus y ,  as shown in figure 3. Clearly, reasonable, data collapse is 
achieved provided that the early-time transients and late-time finite-size effects are 
filtered outs. This shows that the kinetics of the surface layer, in the presence of a 

t If the large y limit is singular, then more complicated forms of the crossover function such as g(y) -ewy, 
based on droplet models might be expected. 

: $Because the surface field stabilizes a given phase, for a critical quench, a time regime where only small 
isolated shrinking droplets are present in rapidly reached. 
$Numerically, the large y regime was difficult to probe, so that the possibility of a singular limit as y-rm 
cannot ultimately be ruled out. 

TI2 
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Figore3. Plot of thecrossover scaling functiong(j)=[R.(t, HJ-Re(t, H,=O)]/R,(I, H,= 
0) versus y = f H : :  (A; H,=O.2; X ,  H,=0.4; 0, H,=0.6; and *, H,=0.8). The inset 
shows the ewes for the same fields, from bottom to top. Other parameters: .IJ3=10.0, 
T=1.5. 

surface field, is similar to that of a model A system in a field?. We also studied quenches 
with non-zero- H, and T<T,,  for which a similar crossover scaling form 
R(t, H,) - t"'R'g(y) proved to be ,valid. 

So far we have only discussed the phase separation in the presence of a surface for 
critical quenches. A number of off-critical quenches were also studied, both with and 
without phase separation in the bulk. The presence of excess concentration of one 
species in our three-dimensional system was found to act just like a surface field for 
the surface layer, providing T >  T, : the excess concentration unbalances the relative 
stability of the two phases and allows growth locally to proceed much more rapidly 
than t"? (in a two-dimensional model A system, the relative stability of the two phases 
is preserved and the growth is still curvature driven). In the presence of a surface field 
and an excess concentration, the surface layer experiences an effective field which results 
from the balance of the two effects, so that in principle, for a given off-criticality, there 
will be a surface field that will cancel the effect of the excess concentration. Thus, for 
example, for a quench with off-criticality of 0.1, and a surface field H+-0.70, then= 
4 growth law, as well as scaling (as evidenced by a constant concentration in the 
surface layer over the simulation time) is recovered. We hope to present a more detailed 
discussion of this data in the future. 

In summary, we have studied the simplest model for phase separation in the presence 
of a surface. Under most quench conditions, we observed the formation of ordered 
domains in the surface layer which grew more rapidly than the bulk domains. In the 
absence of phase separation in the bulk, the surface layer was observed to follow model 
A dynamics, both in the presence and absence of a surface field. A smooth crossover 
between model A and model B dynamics in the surface layer was observed if there was 
phase separation in the bulk. In the future we hope to study the effects of hydrodynamics 
on the growth of the surface layers. 

TA pure model A system with a field has been studied by Lacoursiere C and Grant M (unpublished). 
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